P.G. Semester-IV Examination, 2023 CHEMISTRY

Course ID: 41453 Course Code: CHEM-403E

Course Title: Inorganic Chemistry Special

Time: 2 Hours Full Marks: 40

The figures in the right-hand margin indicate marks.

Candidates are required to give their answers in their own words as far as practicable.

1. Answer any **five** of the following questions:

 $2 \times 5 = 10$

- a) Name the diseases caused by the deficiency of Cu and Zn.
- b) Define Nitrogen rule and explain with a suitable example.
- c) What is symmetric top and assymetric top molecule? Give one example of each type.
- d) Mention the main cause of Anemia and Minamata disease
- e) What do you mean by the term 'polarizability'?
- f) What is hyponatremia and hypokalemia?

- g) Arrange the following in the order of stability: (CH₃)₂CH⁺, CH₃⁺, CH₂=CH-CH₂⁺, C₆H₅-CH₂⁺
- 2. Answer any **four** of the following questions:

 $5 \times 4 = 20$

- a) Explain McLafferty rearrangement with a suitable example.5
- b) How do you remove mercury toxins? Why Selenium is toxic? 3+2=5
- c) Draw the diagram of mass spectrometer and show the each part. Write the principle of magnetic sector analyzer in mass spectrometry. 3+2=5
- d) Write the point group of N_2O , BF_3 and $Cu(H_2O)_6$. What is mutual exclusion principle? 3+2=5
- e) What is chelation therapy? Write the characteristics of ideal chelating ligand. Name of the chelating ligands used for Cu, Pb, As and Au poisoning.

 1+2+2=5
- f) Write down the principle of Atomic Absorption Spectroscopy. What is the difference between atomic absorption and emission spectroscopy? How do you differentiate superoxide- and peroxide- complexes by IR spectroscopy?

 $1\frac{1}{2} + 2 + 1\frac{1}{2} = 5$

3. Answer any **one** of the following questions:

$$10 \times 1 = 10$$

- a) i) Write down the different modes of vibration of AB, type molecules.
 - ii) Calculate the number of stretching and bending vibrational modes in H₂O and NH₃.
 - iii) How IR spectroscopy can be used to determine the different binding modes of nitrosyl group?
 - iv) Calculate the total number of IR and Raman active modes in the molecule $PC1_5$. Character table and Reducible representation are given below: 2+2+3+3=10

D _{3h}	Ε	2 C ₃	3 C ₂	σ_{h}	2 S ₃	3 σ _ν		
A' ₁	1	1	1	1	1	1		$x^2 + y^2, z^2$
A' ₂	1	1	-1	1	1	-1	R_z	
E'	2	-1	0	2	-1	0	(x,y)	(x² - y², xy)
A" ₁	1	1	1	-1	-1	-1		
A"2	1	1	-1	-1	-1	1	Z	
Ε"	2	-1	0	-2	1	0	(R _x , R _y)	(xz, yz)

- b) i) Calculate the ratio of M, (M+l) and (M+2) of BrCl in Mass spectrometry.
 - ii) Identify the fragments corresponding to the peaks observed at m/Z= 55.9401, 121.0103 and 186.0132 in mass spectrum of ferrocene.

- iii) Show the species corresponding to the peaks observed at m/Z= 58, 43 and 29 in mass spectrum of butane.
- iv) Predict the mass spectral fragmentation pattern for C_7H_7NO . $2\frac{1}{2}+2\frac{1}{2}+2\frac{1}{2}+2\frac{1}{2}=10$
